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ON THE ASYMPTOTIC THEORY OF LAMINAR SEPARATION ON A MOVING SURFACE* 

VIK. V. SYCHRV 

The steady flow of an incompressible fluid is considered in the neighbourhood 
of the point of boundary layer separation on a rigid surface moving 
downstream. It is shown that separation occurs in the region downstream 
of the interaction region. The pressure distribution in that region is 
obtained from the solution of the boundary value problem for equations 
of the boundary layer with a given displacement thickness. 

Consider the plane steady flow of a viscous incompressible fluid in the neighbourhood of 
the separation point on a surface that moves downstream at constant velocity. By the asymp- 
totic theory /l/ there is in the neighbourhood of the separation point at high Reynolds 
numbers an interaction region, where a large unfavourable selfinduced pressure gradient is 
acting. Upstream of that region the flow is defined by the Prandtl equations. Outside that 

region (i.e. in the body scales) the pressure distribution is determined by the solution of 
the potential flow theory of a perfect fluid with free streamlines. 

We will present some of the results obtained 

_Ai 

in /l/ related to the solution of the problem of 
the interaction region, which will be necessary 

the velocity vector along these axis, peO+ pV,zp 

is the pressure, and U,&S is the stream func- 
Fig.1 tion. Here L is a characteristic dimension of 

the body, V,, and poo are the velocity and 

pressure along a free streamline, and p is the density. The Reynolds number R = u&v as 

R--t 00. For convenience'we set the flow separation point longitudinal coordinate equal to zero 
in the body scales, and denote the surface velocity of the body by VooV,(V,>O, VW = O(1)). 

In the interaction region whose longitudinal dimension z=O(R-‘l*), the solution of the 
Navier-Stokes equations has a multilayer structure, In the basic part of the boundary layer 
and in the region adjoining the body surface (regions 1 and 3 in Fig.11 the longitudinal 
component of the velocity vector is of the order of unity , and the solution (in liises variables) 
has the form r = R-%x*, q = R+Y (1.1) 

u = Vi (Y) + R-W,* (x*, Y) f 0 (R-Q In R) 
y = (6aJ1 R+ In R + R-‘/l IG, (z*) + Yl (Y)] + 

0 (R-Q In R) 

y = fw*Y, (Y) + 0 (fw) 

P = R-‘/y+ (x*, Y) -j- 0 (R-‘/s In R) 
ap,/ay = 0, pi (I*, Y) = p* (2s) 
vi* = -p* (x*) v,-’ (Y) + B*ul (Y) 

YI (Y) = j vi-1 (Y) dY, v, (co) = 11 
G, (I*) = -e,- ‘In E--P* lx*) + WI + b, + Q-1 In (&z@‘) -1; 

Q, (x*) 
0 (x*) s 0 (I* < 0) 

where the subscript i = 1,s relates to regions 1 and 3, respectively, the constants a,and b, 
define the profile of the boundary layer at the point z = 
B* and the function a((~*) is explained below. 

-0, and the meaning of the constant 

Between these two regions in the neighbourhood of the streamline Y =Y, is the region 

of low speeds (region 2) that makes the main contribution to the displacement action of the 
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boundary layer. Owing to the considerable local pressure gradient, the flow is znviscid and 
the solution may be represented in the form 

lp = R-w, + R+v* (1.2) 

lb = R-Q%* (x*, Yu*) + 0 (R”J* In R) 

y = (iBa,)-VW In R + R-Q IG, (s*) f j/+ (z*, ‘I’*)] + 

0 (R+ In R) 

u* - rfI,v* - 2p (s*) + 2BV 

Immediately adjacent to the body surface is the viscous part of the boundary layer (region 
4), but its importance in the interaction process is secondary, and hence its solution is not 
presented here. 

The displacing action of the boundary layer on its external boundary, as follows from 
(l.l), is determined by the equation 

(1.3) 

and provides the relation between the slope of the streamlines and pressure distribution. The 
second equation that gives this relation and closes the problem is defined by the integral 
of the theory of sma3.f perturbations, which defines the flow in region 5 which includes the 
external potential flow and has the transverse dimension y = G(&'I*). 

The solution of the problem for the interaction region contains an arbitrary constant B+ 
that is the additive constant of the Bernoulli function for region 2. A solution for B*>O 
was obtained in /l/ (an imaginary solution is obtained for B+(O). It was found that inside 
the boundary layer at point x* = 0, Y* ?~f 0 (in region 2) a bifurcation of the streamline 
occurs, and that beyond that point there is a region of reverse flow in which the pressure 
variation is a quantity of the order of &'I=, and the function @(s*) then defines the 
form of the upper separated streamline I* =O. However, nowhere in region 2 does the length- 
wise component of the velocity vector vanish. Hence it was assumed that reverse flow (i.e. 
the satisfaction of the condition u = &/ay = 0) in conformity with the Moore-Rott-Sears 

criterion /2/) occurs in the inner viscous regions imbedded in region 2. Attempts to construct 
a solution for these regions met with considerable difficulties. But, if we set B* = 0 and 
stipulate the appearance of the reverse flow in region 2, a constradiction occurs. 

On the other hand, as shown in /4/, if we assume B* =O (and, consequently, also 
@(s*)= 0) and do not stipulate the occurrence of reverse streams, contradictions do not 

arise. The integral of small-perturbation theory together with (1.3) yields the equation 

(1.4) 

2* = (u&~-%zl. p* (2”) = ~‘/~~l~pl (Xl) 

where H(xl) is the Heaviside function and the positive constant k depends on the position of 

the separation point in the external potential flow. The position of that point is determined 
by the solution in a region of the order of the dimensions of the body and the integral is 

understood in the sense of its principal value. 
Prom the merging with the solution outside the interaction region it follows that 

pa (2,) = -f-s,)'" + x, (-Z&Q + 0 [(-x1)-Y (1.51 

A, (;E1) = I4 t+Q)P + 0 I(-%@1 (zr+ -00) 

A, (x1) = z,'k f h, xl -Ih - (4ql -/- O(z;"'l 

(G' 4 
The constant h, in (1.5) cannot be determined from the solution of the local problem, 

and requires a solution of the problem for the second term of the expansion in R in the region 
y = O(l), r = G(1). To be specific we put X, = 0. On passing to the solution with h,+O, a 
shift occurs in the system of coordinates, so that x becomes ~-%,(kstnc)"~R~f*.. The solution 
of problem (1.41, (1.51 when &, =0 is shown in Fig.2 (see /4/f. 

From formulas (l.l)-(1.5) as CC* -t 00 we have 

P*(~*)--z~llexp(--~/3 (1.6) 

Gl(l~*)+(~/~)k.r'/'-- (2aJ1 lnz* + b. f a;‘ln(2%2) + o(1) 

y. = 4ka,i3 
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(henceforth B* = (D(s*) = 0 everywhere). 
Thus it follows from (1.6) and (1.2) that the interaction only leads to further slowing 

down of the flow in region 2, hence the separation point must lay in the region downstream of 

it. 
2. TO obtain a solution that would define the separation mechanism we shall consider the 

flow in region II that is the continuation of the slow flow region 2 and lies beyond the 
interaction region. 

*en X*+OO, the decrease in the pressure gradient in (1.6) must result in the Eernoulli 
equation being no longer applicable in region II owing to the action of internal friction 
forces. (This also follows from a consideration of subsequent terms of the expansion for the 
interaction region.) The pressure variations that occur in this case cannot result in a change 
in the slope of streamlines on the external boundary layer, since otherwise this region would 
be the same as the region where x*= Rlji;~ =0(l). 

The exponential approach of the pressure to zero as 
xc-+ m indicates that in region II p* = up,, = R’i*p, where 

the small parameter a = a(R)+0 as R- 00. If now, 
instead of I*, we take as the indpendent variable p*, then 
from (1.6) we obtain that in region IX 

x = R-‘/ax* = A0 + A,X (p,,) f o (A,) 
Ah, = $“‘R-‘l= (In a-l)‘/* + (V,) y;“‘R’l* (In In o-1) (In a'r)-'~: 

(24 

Fig.2 Al = &‘/* (1)) a-‘)_l,, 

From the merging with (1.6) as pp-+-m, we have 

x (p*) == - + y;“* In (- $*po) + 0 (1) 

the value of a remains so far undetermined. The expansion of x obtained indicates that 
region II, in which the separation point lies, is at a distance A,, from the interaction region 
(Fig-l). 

Using (l.l), (1.2), (1.6), and the expressions for x and changing to the original vari- 
ables, we can represent the solution for region II in the form 

z = A,, + A,X, $ - i?+Y, + &*W*Y, 

I( = a’k?+u, (X, Ypp) f o (&~R-‘4~) 

P = aft-‘/*p, (X, Y,) + 0 (aft-'/*) 

Y = R-‘4(12~~)‘~ In R + (24-l In a-1 f b, + a,-lx 

ln(2aO%"3 + yO (X, Y,)l + 0 (IV*) 

(2.2) 

Substituting expansion (2.2) together with (2.1) into the Navier-Stokes equations and 
using (on the basis of above considerations) the balance of inertial and viscous terms wi& 
the pressure gradient, we obtain the equations of the boundary layer 

For the small parameter we then obtain the transcendental equation 

s(ln e-r)'/*=.R-'I* (2.4) 

Since region 2 and II do not overlap, 
p* +-0 and p. +-mm. 

it is necessary to merge them in the variables p,,\p 
as Then for the solution in region IX as X-b-00 (i.e. in the 
original variables) we obtain 

Y +Yo'!exp (-RX) PO (7) (2.5) 

p. + -YO+ exp Wv1W9 go 4 two”X + Ho 1%) 

z = yo'l*Yo exp (y,X), F. (7) = (a,%* + 2)"s 

In the basic part of the boundary layer X = O(1) (region I) which is the continuation 
of region 1, it is necessary to take into account the transverse pressure change associated 
with the streamline curvature. Hence using (1.1) and (1.6) (taking into account, generally 
speaking, the next terms of expansion in the solution for the interaction region), we obtain 



Substituting this expansion into the Navier-Stokes equations, we find that g<(X)= 0. 
(Other expressions and the nextterms of the expansion are not subsequentLy used and are not 
presented here). Note that the terms of the expansion for the pressure depend on Y, but all 
of them up to the term 0(&l+) approach zero as Y +Y.,.) Taking into account (2.5), from 

u = iJ1 (‘4’) f 0 boh p = Atp; tx. W + 0 (4) 
y = R-'~*tf6ao)-' In fRd*) + YI (Yfr) + g, (Xl] + 0 (R-“*I 

the merging with the solution in region II, we obtain that sl(X) = 2y~~~'~X + s,-11n(2e,*~,*~).+. 

b, also as \pg --LOO 

Go +aolo* Yo -+a,-’ In IO f 2y,u,-zx f 0 (If (2.6) 

The last formula defines the displacement thickness on the external boundary of region 
II. 

In the lower part of the boundary layer when X =0(1) (region III) the solution is 
similar to the solution in region I, the only difference being that there is no change in 
transverse pressure in the principal terms. The solution has the form 

1~ ==~U,(Y) 4- OfA& P = oR”‘*po (X) -f- o (cl-R+) 

Y = R-QYJ (Y) + 0 (R-y 

As shown in /I/, the .expressions for functions V,(Y), Y$(Y) are 

V,(Y) = eo (Y* -Y) + 0 I(Y* -VI 
Ys (W = --a,-* h (Y$ - Y) f b, f 0 [(Y* - Y)"] 

(Y -c-Y;) 

and, then, from the merging with the solution in region II follows that as Y0 A- co 

ug -+a0 (-Ye), !/o +.-uo-r ln (-Yof - aQ-’ In (~~~~~) f 0 (1) (2.7) 

Let us investigate the behaviour of thesolution in region II as X +oo. Formulas 
(2.6) and (2.7) show that as X +oo tfa region of reverse flow expands linearly. In the 
separated and the lower parts, of the boundary layer, as the principal terms, the velocity 
profiles Ui(Y) are maintained, and mixing layers (regions A and B) develop between the 
reverse flow region (region C) and regionsI and II. Then, as X -LCO we obtain the following 
solutions for the lower and upper parts of region II (the plus and minus signs correspond 
to these, respectively) /3/: 

uo +.W+ (rl), yo -*.2'y,oo-'X + ao-'in X -l-h+(q) (2.8) 

f, (rl)_= =ort i- s,', h,(n) = so” In (rl f a,), '1 = YJX 
Ug -h Xf_ (g), yfJ * -a()-* In x - a,-'In (Zu,a#) -t_ 

h_ (G f_ (8 = a08 +- Qol 
k (5) = -%-l In (E + as), 5 = -YJX 

For the reverse flow as X -N*' we obtain 

z h + ---a0 yl -I, p. --c -aep?('1172 (2.91 

% + ~o-%X @fJ - YdX) - (2ao)"In (2%%'l 

Formulas (2.8) and (2.9) close the system of boundary conditions for region II. 

3. Carrying out the transformation 

x = y,_'X',. y, = a,-'Y' + so-l In (a&-l) (3.1) 

u. = aoft%', pa = aocyl’*lj)‘, Ye = aoy,“Y’ 

we write ~qs,(Z. 3) together with boundary conditions (2.5) - (2.9) in conventional variables 

(omitting the primes) 

Y-hexp(Y- 2X) (Y *co) 

Y -r.-_(2cz,)-'exp(--Y) (Y +- 00) 

Y~{$)('"errp(-X)sh[Y~X+~ln(2ao)] 

f-+--o0 -1exp(-2X) (X 4.- 00) 
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v -+ XT, (q,h P+ (rl+) = exp k - 1 
Y + xv_ bl_)- ‘p_ @I_) = 1 - exp (-3-l 
q+ = Y-2X - In X, q_ = Y + In (2aJ) 

Y +X (1 - Y/X) - in (2aJk p -+ - ‘L (X + 00) 

q, = ~5*3/(3k) 

The solution of the problem thus depends on the single parameter %. The appearance in 

it of positive constants 5, and k are determined from the global solution; t0 the different 

a0 there then correspond different positions of the Separation point in region 11. 
The pressure distribution in pxoblem (3.2) must be determined by the Solution, while the 

displacement thickness is specified. Boundary value problems of this type for equations of 

the boundary layer appeared in /5-g/. Unlike the classical approach, in which the pressure 

gradient is specified, solutions of these problems behave consistently at the point of zero 

friction. Hence also for (3.2) at the separation point where in conformity With the Moore- 
Rott-Sears criterion YY = Yryy = 0, the irremovable singularity /9f does not arise. 

Rote that, using the transposition, 

Y = 2 -j- x - In (2c#~ 

problem (3.2) reduces to a form that is symmetrical about the Z= 0 axis, and hence the condi- 

tions at - 00 can be replaced by the conditions \y = Upa = 0 when Z = 0. 

4. Let us briefly consider the f1ow beyond the region X=0(i) in order to show that 
the solution obtained becomes the solution for the region with the longitudinal scale of the 
order uf body dimensions (z=O(i)) as z-+0. 

Region I-III are situated at a distance OfA,) (see (2.1)) from the origin of coordinates, 
hence to obtain the solution when r-0 , it is necessary to consider regions in which 

3 = $i*R-'!: (ln s-1)*/r + 

and 
R-“” (In In u-l) (In 0-1)-“~ X,, X, > 2/(9yF) 

o = R-l’* (In o-‘)“, X,, X, > $1' 

In region A, which is a continuation of the upper viscous part of region XI, the solution 
in conformity with (2.8), when X*==O(i), can be represented in the form 

Y, = (In u-1) 'pt, u = AL (In a-') (X, - $'*) C'+(s) + (4.1) 
o (A, 1x1 a-l), Jo = R-'f*f(i2a&1 ln fl + 
4kXdN3 - (2&J-'lnu-~ + 

2 (3n,)_'lnln a-1 + %-kin (X, - yd'*) - 

(3~)-~ ln X$X; (8) + b, + .,,-l ln (30,')l f o (R-I") 
s = Y, (X, - u, ) f @+ (4 = LOS f up* 
H, (I) = cap-l in (s + .J 

In the basic part of the detached boundary layer the solution that satisfies the condi- 
tions of merging with (4.1) has the form 

u = V, ('l') + R-l’* (in u-~)*‘* ulo (X,, Y) + D [R+ (in a-‘)“*], 

P = AA (X,, Y) + u (A,) 
(4.2) 

y = R-‘” 
i 

(&Q-l in R -+ + kX’i* h 0-I - (3U$'la lno-~-(2Q)-iIn x* + 

ye+ b@+aa;’ In(2a0*) 
i 
+ o(R-'h) 

aUP 
- = - 2k*U1 + (U,U,‘)‘, 
3x2 

pz = - kX;‘/’ 
s 

U1 (Y) H 

As X,-v, + the solution (4.1), (4.2) merges with the solution in region X,= o(l) iis 

x1 - =, where it is similar to (4.1), (4.2) and represents in essence the solution for 
regions I and II expressed in variables Xt - 0 (2) , taken as X-W. 

In the lower Part of the boundary layer the solution is similar to (4,1), (4.2). 
The solution (4-l), (4.2) merges with the solution for the region ==o(i) as t-9 and 

X*-m, and, as wi11 be readily seen, the basic part of the boundary layer and region A be- 
comes a mixing layer with characteristic transverse dimension of the order of &I*. Region B 
and the boundary layer lower Part (together with boundary layer Iv) become the conventional 
boundary layer on the moving surface with zero velocity on the external boundary. The reverse 
flow (region C) depends on the ejection of the detached and lower parts of the boundary layer. 
Here p = 0 (OR+) as XI-co: , and a-‘R”‘p - - 94$ (8k*X*)-‘, i.e. by virtue of (2.4), as t-0 

the variable part of the pressure is the quantity O(R-1). 
The solution obtained obviously defines a particular form of unsteady flow in which the 

separation point moves upstream at constant velocity u,= --u,. 
Note that the destruction of the trail occurs /lo/, as also does separation on a moving 

surface, in the viscous region that lies behind the interaction region. The solution in that 
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region reduces to a problem of the form (3.2), where the conditions as Y....-~ are r~ni~~,i 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

9. 

the conditions at the trail axis of symmetry 
--I----- 

Y=Vr, -0 when Y=O. 
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A THREE-DI~~SIO~L HYPERSONIC VISCOUS SHOCK LAYER 
IN TAO-PHASE FLOM* 

S.V. PEIGIN 

A three-dimensional hypersonic flow of visous gas containing solid or 
liquid deformable particles past smooth blunt bodies with permeable 
surfaces, is considered. A numerical solution is obtained near the 
stagnation point of double curvature for a wide range of values of the 
Reynoldsnumber,Sizes and compositions of the particles, shape of the body 
and the injection (suction) parameters. Characteristic velocity and 
temperature profiles across the shock layer are given for each phase, and 
also the dependence of the separation, friction and heat exchange coeffic- 
ients at the body surface on the Reynolds number and other defining 
parameters of the problem. It is shown that the presence of particles in 
the flow leads, other conditions being equal, to a reduction in the 
separation of the shock wave. The asymptotic behaviour of the equations 
of the three-dimensional two-phase hypersonic shock-layer is analysed for 
the limiting case of small particles. It is shown that in this case the 
flow separates into two layers; equations are given for the principal 
terms of the expansions in each layer, and boundary conditions are given 
following from the conditions for matching the solutions in adjacent regions. 
An analytic solution of the problem in the approximation of two inviscid 
layers separated by a contact surface is obtained for the layer adjacent 
to the body near the stagnation point for large Reynolds numbers and 
strong injection. 

The motion of heterogeneous particles in plane or axisymmetric shock layers was studied 
earlier in /l/, in the inviscid formulation and assuming that the effect of the particles on 
the gas-dynamic parameters is small.. A numerical solution of the problem of a supersonic, 
inviscid two-phase flow past a sphere was obtained in /2---41. Homogeneous gas flow in a 

viscous, hypersonic three-dimensional shock layer near the stagnation point was studied in 15;. 
*?rikl.M;ttem.Hekhan.,48,2,254-263,3.984 


